Materiales compuestos de polímero reforzado con fibra de cabuya y coco aplicado al sector automotriz

Alexander Montufar-Marcalla, Abel Remache-Coyago

Resumen


La fibra natural es un recurso que se encuentra en abundancia y es rentable. Se descompone fácilmente y es biodegradable. Los compuestos de fibras naturales han ganado mucha atención por parte de los investigadores. Los refuerzos de fibras naturales más utilizados en compuestos para automóviles son yute, abacá, cabuya, coco y kenaf, etc. Los materiales compuestos juegan un papel vital en el mundo de la fabricación actual debido a su peso ligero con una resistencia razonable. Para mejorar las características particulares de una fibra, se hibridan varias fibras y se tratan químicamente en fin de los materiales compuestos. La fibra de coco, y fibras de agave que se preparan en forma de matriz, se mezclan con resinas apropiadas para lograr una unión adecuada del material, donde los resultados de la experimentación se comparan con otros tipos de compuestos poliméricos reforzados. Acá se presenta múltiples propiedades derivadas de la caracterización mecánica, se aprecian estudios de microestructura en las muestras donde se identifica la elección de la fibra, el relleno, el aglutinante, el tamaño de partícula y la composición juegan un papel importante para la optimización en los materiales. La interpretación de los resultados depende de la aplicación buscada en la industria automotriz y que en esta revisión muestra las opciones más actuales para futuras investigaciones.


Palabras clave


Fibra natural; propiedades mecánicas; fibra de coco; fibras de agave; aplicaciones automotrices.

Texto completo:

PDF HTML XML

Referencias


Abhemanyu, P. C., Prassanth, E., Kumar, T. N., Vidhyasagar, R., Marimuthu, K. P., & Pramod, R. (2019). Characterization of natural fiber reinforced polymer composites. AIP Conference Proceedings, 2080. https://doi.org/10.1063/1.5092888

Agilan, H. (2018). Automotive Application and Mechanical Property Characterisation of Sisal Fiber Reinforced Epoxy Composite Material. International Journal of Engineering Research & Technology (IJERT), 6(7), 1015.

Alagarsamy, S. ., Sagayaraj, A. ., & Vignesh, S. (2015). Investigating the Mechanical Behaviour of Coconut Coir – Chicken Feather Reinforced Hybrid Composite. International Journal of Science, Engineering and Technology Research, 4(12), 4215–4221.

Amoako, G., Mensah-Amoah, P., Sam, F., & Sackey, S. S. (2018). Some Mechanical Properties of Coconut Fiber Reinforced Polyethylene Composite to Control Environmental Waste in Ghana. Energy and Environment Research, 8(1), 1. https://doi.org/10.5539/eer.v8n1p1

Annandarajah, C., Li, P., Michel, M., Chen, Y., Jamshidi, R., Kiziltas, A., Hoch, R., Grewell, D., & Montazami, R. (2018). Study of agave fiber-reinforced biocomposite films. Materials, 12(1), 99. https://doi.org/10.3390/ma12010099

Arantes, M. M., Santana, J., Valenzuela-Díaz, F. R., Rangari, V. K., Guven, O., & Moura, E. A. B. (2018). Development and characterization of recycled-HDPE/EVA foam reinforced with babassu coconut epicarp fiber residues. Minerals, Metals and Materials Series, Part F8, 497–506. https://doi.org/10.1007/978-3-319-72484-3_52

Arjona, S. D., Perdomo, F., & Gutiérrez, R. M. De. (2001). PEAD-FIBRAS DE FIQUE Ciencia y Tecnología. Junio, 3(No 1), 43–50.

Arul Murugan, M., & Kumar, J. G. K. (2018). Cheap natural fibers as composite material for automobiles - An experimental research. International Journal of Mechanical Engineering and Technology, 9(6), 182–185.

Arunachalam, K., & Pandian, G. S. (2016). Modeling and analysis of clutch facing made up of biodegradable coir fibre based composite material. Polymers and Polymer Composites, 24(7), 463–468. https://doi.org/10.1177/096739111602400703

Athawale, A. A., & Pandit, J. A. (2019). Unsaturated polyester resins, blends, interpenetrating polymer networks, composites, and nanocomposites: State of the art and new challenges. In Unsaturated Polyester Resins: Fundamentals, Design, Fabrication, and Applications (pp. 1–42). https://doi.org/10.1016/B978-0-12-816129-6.00001-6

Bajwa, D. S., & Bhattacharjee, S. (2016). Current Progress, Trends and Challenges in the Application of Biofiber Composites by Automotive Industry. Journal of Natural Fibers, 13(6), 660–669. https://doi.org/10.1080/15440478.2015.1102790

Bartol, T., & Mackiewicz-Talarczyk, M. (2015). Bibliometric Analysis of Publishing Trends in Fiber Crops in Google Scholar, Scopus, and Web of Science. Journal of Natural Fibers, 12(6), 531–541. https://doi.org/10.1080/15440478.2014.972000

Brenes-Acosta, A., & Stradi-Granados, B. A. (2014). Comparative study of the mechanical properties of polyester resin with and without reinforcement with fiber-glass and furcraea cabuya fibers. Fibers and Polymers, 15(10), 2186–2192. https://doi.org/10.1007/s12221-014-2186-4

Butola, R., Malhotra, A., Yadav, M., Singari, R., Murtaza, Q., & Chandra, P. (2019). Experimental studies on mechanical properties of metal matrix composites reinforced with natural fibres ashes. SAE Technical Papers, 2019-April(April). https://doi.org/10.4271/2019-01-1123

Chandramohan, D. (2014). Studies on natural fiber particle reinforced composite material for conservation of natural resources. Advances in Applied Science Research, 5(2), 305–315.

Correia, E. A., Torres, S. M., Alexandre, M. E. O., Gomes, K. C., Barbosa, N. P., & Barros, S. D. E. (2013). Mechanical performance of natural fibers reinforced geopolymer composites. Materials Science Forum, 758, 139–145. https://doi.org/10.4028/www.scientific.net/MSF.758.139

Crăciun, A. L., & Pinca-Bretotean, C. (2016). Advanced materials with natural fibred reinforced aluminiu composite for automotive brake disc. Solid State Phenomena, 254, 91–96. https://doi.org/10.4028/www.scientific.net/SSP.254.91

Dhas, J. E. R., Pradeep, P., Gladson, D., Dinesh, R., & Aran, M. (2017). Comparison of mechanical properties for alkali treated and untreated palm/glass sandwiched fiber reinforced polymer composite. Proceedings of the International Conference on Recent Advances in Aerospace Engineering, ICRAAE 2017. https://doi.org/10.1109/ICRAAE.2017.8297216

Dhawan, V., Singh, S., & Singh, I. (2013). Effect of Natural Fillers on Mechanical Properties of GFRP Composites. Journal of Composites, 2013, 1–8. https://doi.org/10.1155/2013/792620

Dungani, R., Abdul Khalil, H. P. S., Aprilia, N. A. S., Sumardi, I., Aditiawati, P., Darwis, A., Karliati, T., Sulaeman, A., Rosamah, E., & Riza, M. (2017). Bionanomaterial from agricultural waste and its application. In Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications (Issue 1, pp. 45–88). https://doi.org/10.1016/B978-0-08-100957-4.00003-6

Figueroa-Velarde, V., Diaz-Vidal, T., Cisneros-López, E. O., Robledo-Ortiz, J. R., López-Naranjo, E. J., Ortega-Gudiño, P., & Rosales-Rivera, L. C. (2021). Mechanical and Physicochemical Properties of 3D-Printed Agave Fibers/Poly (lactic) Acid Biocomposites. Materials, 14(11), 3111.

Franco-Urquiza, E. A., Renteria, V., Perez-Mora, R., González-García, P., & Torres-Arellano, M. (2020). Mode i interlaminar fracture toughness of biolaminates composites charged with reinforced particles. Composites and Advanced Materials Expo, CAMX 2020.

Gananasekaran, K., Balachandar, M., Vinoth Kumar, M., Sathish, S., & Balaji, D. (2019). Synthesis and evaluation of polyurethane foam composites for enhanced sound absorption at low frequency. International Journal of Recent Technology and Engineering, 8(3), 6815–6818. https://doi.org/10.35940/ijrte.C5762.098319

Ganesh, R., Manimaran, A., & Logesh, K. (2018). Experimental study on investigation of sic in glass fibre reinforced lap joint. International Journal of Mechanical and Production Engineering Research and Development, 8(3), 893–900. https://doi.org/10.24247/ijmperdjun201894

Gopinath, A., Senthilkumar, M., & Babu, A. (2018). Evaluation of Mechanical Properties and Microstructure of Polyester and Epoxy Resin Matrices Reinforced with Jute, E-glass and coconut Fiber. Materials Today: Proceedings, 5(9), 20092–20103. https://doi.org/10.1016/j.matpr.2018.06.376

Ige, O. E., Inambao, F. L., & Adewumi, G. A. (2019). Effect of fiber, fillers and binders on automobile brake pad performance: a review. International Journal of Mechanical Engineering and Technology (IJMET), 10(6), 135–150. http://www.iaeme.com/IJMET/index.asp135http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=6http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=6

Jagadeesh, P., Thyavihalli Girijappa, Y. G., Puttegowda, M., Rangappa, S. M., & Siengchin, S. (2020). Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview. In Journal of Natural Fibers (pp. 1–16). Taylor & Francis. https://doi.org/10.1080/15440478.2020.1854145

Jani, S. P., Sajith, S., Rajaganapathy, C., & Khan, M. A. (2020). Mechanical and thermal insulation properties of surface-modified Agave Americana/carbon fibre hybrid reinforced epoxy composites. Materials Today: Proceedings, 37(Part 2), 1648–1653. https://doi.org/10.1016/j.matpr.2020.07.180

Kamboj, I., Jain, R., Jain, D., & Bera, T. K. (2020). Effect of Fiber Pre-treatment Methods on Hygrothermal Aging Behavior of Agave Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 1–14. https://doi.org/10.1080/15440478.2020.1838398

Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., & Vigneshkumar, N. (2019). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings, 27, 2828–2834. https://doi.org/10.1016/j.matpr.2020.01.011

Khalid, M. Y., Imran, R., Arif, Z. U., Akram, N., Arshad, H., Rashid, A. Al, & Márquez, F. P. G. (2021). Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. In Coatings (Vol. 11, Issue 3, pp. 1–18). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/coatings11030293

Kicińska-Jakubowska, A., Bogacz, E., & Zimniewska, M. (2012). Review of Natural Fibers. Part I-Vegetable Fibers. Journal of Natural Fibers, 9(3), 150–167. https://doi.org/10.1080/15440478.2012.703370

Koodalingam, B., Senthilkumar, P., & Rajesh Babu, S. (2020). Study of mechanical properties of the polymer matrix composite materials using pistachio shells. Materials Today: Proceedings, 33(13), 2912–2916. https://doi.org/10.1016/j.matpr.2020.02.876

Krishnamoorthy, K., & Saishanker, V. (2016). Sustainable Polyurethane Composite with Coconut Fiber for NVH Applications. SAE Technical Papers, 2016-Febru(February). https://doi.org/10.4271/2016-28-0143

Kumar, J. G. K., & Venkatesh Babu, R. (2020). Mechanical behaviour and characterization of reinforced CNSL composite material. Materials Today: Proceedings, 22, 404–409. https://doi.org/10.1016/j.matpr.2019.07.398

Kumar, J. G. K., Venkatesh Babu, R., & Arul Murugan, M. (2018). A reinforced coconut char, jute and glass fibers composite material mechanical effects compared by using taguchi method and analysis (Anova) technique. International Journal of Engineering and Technology(UAE), 7(4), 2903–2908. https://doi.org/10.14419/ijet.v7i4.15657

Langhorst, A. E., Burkholder, J., Long, J., Thomas, R., Kiziltas, A., & Mielewski, D. (2018). Blue-agave fiber-reinforced polypropylene composites for automotive applications. BioResources, 13(1), 820–835. https://doi.org/10.15376/biores.13.1.820-835

Lohar, D. V., Damle, P. G., & Nikalje, A. M. (2020). A Review of Hybrid polymer Bio-composites. IOP Conference Series: Materials Science and Engineering, 810(1). https://doi.org/10.1088/1757-899X/810/1/012001

Luz, F. S. Da, Ramos, F. J. H. T. V., Nascimento, L. F. C., Figueiredo, A. B. H. D. S., & Monteiro, S. N. (2018). Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. Journal of Materials Research and Technology, 7(4), 528–534. https://doi.org/10.1016/j.jmrt.2018.04.025

Motaung, T. E., Linganiso, L. Z., & Mohomane, S. M. (2017). Agricultural waste fibers and biopolymer matrices used in biocomposites. In Biocomposites: Properties, Performance and Applications (pp. 11–26).

Mulenga, T. K., Ude, A. U., & Vivekanandhan, C. (2021). Techniques for modelling and optimizing the mechanical properties of natural fiber composites: A review. In Fibers (Vol. 9, Issue 1, pp. 1–17). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/fib9010006

Narendiranath Babu, T., Shivasai, B., Mahesh, V., & Reddy, P. (2017). Design and analysis of coconut fiber reinforced polyester composite leafspring. International Journal of Mechanical Engineering and Technology, 8(6), 544–552.

Nimal, S., & Fathima, A. A. S. (2018). Recycling automobile service station wash water-Chennai. International Journal of Civil Engineering and Technology, 9(4), 795–802.

Paredes, J., Arroba, C., Machado, A., & Castillo, W. (2021). Mechanical Properties Optimization of the Elastomeric Matrix Reinforced Composite Material with Cabuya Fiber, Using the DOE/Complete Factorial Design and Desirability Function. Key Engineering Materials, 872, 45–53. https://doi.org/10.4028/www.scientific.net/kem.872.45

Pereira, K. P. S., Sheikh, M. A. T., & Prabhu, R. (2020). Modeling and analysis for wear performance of coconut shell powder filled glass fiber composite using Taguchi approach. AIP Conference Proceedings, 2236. https://doi.org/10.1063/5.0007090

Rajasekhar, P., Ganesan, G., & Senthilkumar, C. (2017). Wear Behavior of Coconut Fiber Reinforced Polyamide Matrix Composites. In International Journal of Recent Technology and Engineering (Issue 1).

Robledo-Ortíz, J. R., González-López, M. E., Rodrigue, D., Gutiérrez-Ruiz, J. F., Prezas-Lara, F., & Pérez-Fonseca, A. A. (2020). Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding. Journal of Polymers and the Environment, 28(3), 1040–1049. https://doi.org/10.1007/s10924-020-01667-1

Santhanam, S. K. V., Pullayikodi, S. S., Sampath, P., Doraiswamy, V., & Manickam, D. (2020). Crash analysis and characterization of bio organic fillers in the BFRP/EPOXY composites. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2B-2020. https://doi.org/10.1115/IMECE2020-23103

Sathish Kumar, P., Neethimanickam, I., Robinston Jeyasingh Swikker, R., & Maheswari, K. S. (2020). Strength and behavior analysis of honey comb sandwich composite structure. International Journal of Scientific and Technology Research, 9(1), 2668–2675.

Srinivasababu, N. (2017). Mechanical Behavior of Arbitrarily Reinforced Cocos Nucifera Leaf Sheath Fibre Reinforced Polyester Composites - Comparison with other Coconut FRP Composites. Materials Today: Proceedings, 4(9), 9612–9615. https://doi.org/10.1016/j.matpr.2017.06.234

Subyakto, S., Hermiati, E., Masruchin, N., Ismadi, I., Prasetiyo, K. W., Kusumaningrum, W. B., & Subiyanto, B. (2017). Injection Molded of Bio-Micro-Composites from Natural Fibers and Polylactic Acid. Wood Research Journal, 2(1), 21–26. https://doi.org/10.51850/wrj.2011.2.1.21-26

Sundarababu, J., Anandan, S. S., & Griskevicius, P. (2020). Evaluation of mechanical properties of biodegradable coconut shell/rice husk Powder polymer composites for light weight applications. Materials Today: Proceedings, 39, 1241–1247. https://doi.org/10.1016/j.matpr.2020.04.095

Sundarapandian, G., & Arunachalam, K. (2020). Investigating suitability of natural fibre-based composite as an alternative to asbestos clutch facing material in dry friction clutch of automobiles. IOP Conference Series: Materials Science and Engineering, 912(5). https://doi.org/10.1088/1757-899X/912/5/052017

Tenazoa, C., Savastano, H., Charca, S., Quintana, M., & Flores, E. (2021). The Effect of Alkali Treatment on Chemical and Physical Properties of Ichu and Cabuya Fibers. Journal of Natural Fibers, 18(7), 923–936. https://doi.org/10.1080/15440478.2019.1675211

Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2018). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305–1315. https://doi.org/10.1002/adv.21789

Torres, F. G., Arroyo, O. H., & Gomez, C. (2007). Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. Journal of Thermoplastic Composite Materials, 20(2), 207–223. https://doi.org/10.1177/0892705707073945

Vaidyanathan, H. P., Murty, P., & Eswara, S. P. (2011). Hybrid natural fiber composites molded auto-body panels/ skins (Hybrid NFPC): Processing, characterization & modeling. SAE Technical Papers.

Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 103–122). Elsevier.

Verma, D., Sharma, S., & Farswan, R. (2017). Mechanical properties of kenaf fiber reinforced thermoplastic composites: A recent study. In Green Polymeric Materials: Advances and Sustainable Development.

Vijayakumar, S., Abilash, K., & Vinoth, R. (2014). Application of green composites in structural upgradation. Journal of Chemical and Pharmaceutical Sciences, 2014-Decem, 4–5.

Vögele, S., Grajewski, M., Govorukha, K., Rübbelke, D., Ahi, P., Searcy, C., Draxler, M., Schenk, J., Bürgler, T., Sormann, A., Co, T., Rynikiewicz, C., Hafeez, K., Griffiths, M., Griffiths, J., Naim, M. M., Conejo, A. N., Birat, J. P., Dutta, A., … Glavič, P. (2020). Energy Use in the Iron and Steel Industry. Journal of Cleaner Production, 32(2), 285. https://www.moh.gov.sa/en/Ministry/Statistics/Book/Pages/default.aspx%0Ahttp://dx.doi.org/10.1016/j.resconrec.2010.03.003%0Ahttps://www.eurofer.eu/assets/Uploads/European-Steel-in-Figures-2020.pdf%0Ahttps://doi.org/10.1007/s11135-018-0781-y%0Aworldsteel.o

Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., & Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. In D. Pham (Ed.), Cogent Engineering (Vol. 5, Issue 1, p. 1446667). Cogent OA. https://doi.org/10.1080/23311916.2018.1446667

Zuccarello, B., & Zingales, M. (2017). Toward high performance renewable agave reinforced biocomposites: Optimization of fiber performance and fiber-matrix adhesion analysis. Composites Part B: Engineering, 122, 109–120. https://doi.org/10.1016/j.compositesb.2017.04.011

Zuccarello, Bernardo, Bartoli, M., Bongiorno, F., Militello, C., Tagliaferro, A., & Pantano, A. (2021). New concept in bioderived composites: Biochar as toughening agent for improving performances and durability of agave-based epoxy biocomposites. Polymers, 13(2), 1–14. https://doi.org/10.3390/polym13020198




DOI: http://dx.doi.org/10.23857/dc.v7i3.2002

Métricas del Artículos

Cargando Métricas.....

Metrics powered by MI WEB PRO

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia


Copyright (c) 2021 Alexander Montufar-Marcalla, Abel Remache-Coyago

URL de la Licencia: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Polo de Capacitación, Investigación y Publicación (POCAIP)

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: [email protected]

URL: https://www.dominiodelasciencias.com/

DOI: https://doi.org/10.23857/pocaip