Estado del arte de sistemas fotovoltaicos conectados a la red y tecnologías en el Ecuador

Autores/as

DOI:

https://doi.org/10.23857/dc.v9i4.3690

Palabras clave:

Fotovoltaico, Ecuador, Conectado a red, Distribución, Monitoreo

Resumen

En este artículo se presenta una revisión actualizada sobre tecnologías y aplicaciones de sistemas fotovoltaicos interconectados a la red eléctrica en Ecuador. Mediante una rigurosa búsqueda y análisis de literatura reciente, se estudian los avances, barreras y perspectivas en cuanto a marcos regulatorios propicios, integración técnica en redes de distribución, así como investigación y desarrollo tecnológico local. Se concluye que, si bien existe un significativo potencial solar en la región costera ecuatoriana, la adopción de la generación fotovoltaica distribuida continúa siendo marginal debido a limitaciones regulatorias, de mercado y técnicas. Si bien las redes actuales poseen cierta capacidad de integración renovable, se requieren mejores estrategias para su incorporación en el medio. En paralelo, se registran valiosos avances locales en sistemas de monitorización y control inteligente para fotovoltaica conectada a red. En suma, es necesario impulsar reformas habilitantes y robustecer capacidades técnicas para materializar efectivamente los beneficios de esta fuente sustentable.

Citas

P. Choudhary and R. K. Srivastava, “Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities,” J Clean Prod, vol. 227, pp. 589–612, Aug. 2019, doi: 10.1016/J.JCLEPRO.2019.04.107.

N. Khaboot, R. Chatthaworn, A. Siritaratiwat, C. Surawanitkun, and P. Khunkitti, “Increasing PV penetration level in low voltage distribution system using optimal installation and operation of battery energy storage,” Cogent Eng, vol. 6, no. 1, Jan. 2019, doi: 10.1080/23311916.2019.1641911.

J. Cevallos-Sierra and J. Ramos-Martin, “Spatial assessment of the potential of renewable energy: The case of Ecuador,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1154–1165, Jan. 2018, doi: 10.1016/J.RSER.2017.08.015.

“Plan Maestro de Electricidad – Ministerio de Energia y Minas.” Accessed: Dec. 12, 2023. [Online]. Available: https://www.recursosyenergia.gob.ec/plan-maestro-de-electricidad/

D. Icaza, D. Borge-Diez, and S. P. Galindo, “Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador,” Renew Energy, vol. 182, pp. 314–342, Jan. 2022, doi: 10.1016/J.RENENE.2021.09.126.

M. Rodriguez Gamez et al., “Energy Repowering Using Photovoltaic Microgrids-A Case Study in the Province of Manabí in Ecuador,” Article in International Journal on Engineering Applications, vol. 10, no. 3, 2022, doi: 10.15866/irea.v10i3.20485.

M. Tapia, L. Ramos, D. Heinemann, and E. Zondervan, “Power to the city: Assessing the rooftop solar photovoltaic potential in multiple cities of Ecuador,” Physical Sciences Reviews, vol. 8, no. 9, pp. 2285–2319, Sep. 2023, doi: 10.1515/PSR-2020-0061/MACHINEREADABLECITATION/RIS.

A. Barragán-Escandón, D. Jara-Nieves, I. Romero-Fajardoc, E. F. Zalamea-Leónesteban, and X. Serrano-Guerrero, “Barriers to renewable energy expansion: Ecuador as a case study,” Energy Strategy Reviews, vol. 43, p. 100903, Sep. 2022, doi: 10.1016/J.ESR.2022.100903.

M. Rodriguez Gámez, A. Vázquez Pérez, W. M. A. Saltos Arauz, and J. Ramos Guardarrama, “El Potencial Solar y la Generación Distribuida en la Provincia de Manabí en el Ecuador,” Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT ISSN: 2588-0721, vol. 2, no. 2, p. 41, Dec. 2017, doi: 10.33936/RIEMAT.V2I2.1143.

J. L. García, F. Jurado, and V. Larco, “Review and resource assessment, solar energy in different region in Ecuador,” E3S Web of Conferences, vol. 80, p. 01003, Jan. 2019, doi: 10.1051/E3SCONF/20198001003.

S. K. H. Chow, E. W. M. Lee, and D. H. W. Li, “Short-term prediction of photovoltaic energy generation by intelligent approach,” Energy Build, vol. 55, pp. 660–667, Dec. 2012, doi: 10.1016/J.ENBUILD.2012.08.011.

E. Scolari, F. Sossan, and M. Paolone, “Irradiance prediction intervals for PV stochastic generation in microgrid applications,” Solar Energy, vol. 139, pp. 116–129, Dec. 2016, doi: 10.1016/J.SOLENER.2016.09.030.

P. Ramanan, K. M. K., and A. Karthick, “Performance analysis and energy metrics of grid-connected photovoltaic systems,” Energy for Sustainable Development, vol. 52, pp. 104–115, Oct. 2019, doi: 10.1016/J.ESD.2019.08.001.

K. Zeb et al., “A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 1120–1141, Oct. 2018, doi: 10.1016/J.RSER.2018.06.053.

S. Chatterjee, P. Kumar, and S. Chatterjee, “A techno-commercial review on grid connected photovoltaic system,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2371–2397, Jan. 2018, doi: 10.1016/J.RSER.2017.06.045.

J. Ayala-Pico, D. Arcos–Aviles, A. Ibarra, C. Fernandez, F. Guinjoan, and W. Martinez, “Current development of electricity generation systems in the Galapagos Islands – Ecuador,” Renewable Energy Focus, vol. 46, pp. 88–102, Sep. 2023, doi: 10.1016/J.REF.2023.06.003.

M. A. Ponce-Jara, M. Castro, M. R. Pelaez-Samaniego, J. L. Espinoza-Abad, and E. Ruiz, “Electricity sector in Ecuador: An overview of the 2007–2017 decade,” Energy Policy, vol. 113, pp. 513–522, Feb. 2018, doi: 10.1016/J.ENPOL.2017.11.036.

J. Patricio, M. Vinicio, and C. Raúl, “Incentivo a la generación distribuida en el Ecuador,” 2018, doi: 10.17163/ings.n19.2018.06.

F. Scheller, I. Doser, E. Schulte, S. Johanning, R. McKenna, and T. Bruckner, “Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany,” Energy Res Soc Sci, vol. 76, p. 102065, Jun. 2021, doi: 10.1016/J.ERSS.2021.102065.

A. Cano, P. Arévalo, and F. Jurado, “Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study,” Energy, vol. 202, p. 117727, Jul. 2020, doi: 10.1016/J.ENERGY.2020.117727.

N. M. Kumar, K. Atluri, and S. Palaparthi, “Internet of Things (IoT) in Photovoltaic Systems,” 2018 National Power Engineering Conference, NPEC 2018, Sep. 2018, doi: 10.1109/NPEC.2018.8476807.

A. Kharrazi, V. Sreeram, and Y. Mishra, “Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review,” Renewable and Sustainable Energy Reviews, vol. 120, p. 109643, Mar. 2020, doi: 10.1016/J.RSER.2019.109643.

Q. Peng, A. Sangwongwanich, Y. Yang, and F. Blaabjerg, “Grid-friendly power control for smart photovoltaic systems,” Solar Energy, vol. 210, pp. 115–127, Nov. 2020, doi: 10.1016/J.SOLENER.2020.05.001.

P. Ramanan, K. M. K., and A. Karthick, “Performance analysis and energy metrics of grid-connected photovoltaic systems,” Energy for Sustainable Development, vol. 52, pp. 104–115, Oct. 2019, doi: 10.1016/J.ESD.2019.08.001.

A. R. Abbasi and M. Mohammadi, “Probabilistic load flow in distribution networks: An updated and comprehensive review with a new classification proposal,” Electric Power Systems Research, vol. 222, p. 109497, Sep. 2023, doi: 10.1016/J.EPSR.2023.109497.

S. Gupta, O. Singh, and M. A. Ansari, “Maximum power point tracking techniques for photovoltaic system: A review,” Lecture Notes in Electrical Engineering, vol. 526, pp. 455–465, 2019, doi: 10.1007/978-981-13-2553-3_44/COVER.

J. Lu, T. Liu, C. He, L. Nan, and X. Hu, “Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy,” Renew Energy, vol. 178, pp. 466–482, Nov. 2021, doi: 10.1016/J.RENENE.2021.05.164.

Y. Wu, Y. Ke, C. Xu, and L. Li, “An integrated decision-making model for sustainable photovoltaic module supplier selection based on combined weight and cumulative prospect theory,” Energy, vol. 181, pp. 1235–1251, Aug. 2019, doi: 10.1016/J.ENERGY.2019.06.027.

I. M. Herremans and M.-E. Tyler, “Climate Change Policy as a Catalyst for Sustainable Energy Practice: Examples from Mainland Ecuador and the Galapagos,” pp. 33–47, 2018, doi: 10.1007/978-3-319-69399-6_3.

L. Buck, S. Scherr, L. Trujillo, J. Mecham, and M. Fleming, “Using integrated landscape management to scale agroforestry: examples from Ecuador,” Sustain Sci, vol. 15, no. 5, pp. 1401–1415, Sep. 2020, doi: 10.1007/S11625-020-00839-1/METRICS.

S. H. A. Nagenborg, “Towards a participatory renewable energy transition in Latin America?: social enterprises and the promotion of decentralized solar energy systems,” 2018, Accessed: Dec. 12, 2023. [Online]. Available: https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2502093

Descargas

Publicado

2023-11-30

Cómo citar

Jiménez López, A. E., & Vásquez Carrera , P. J. (2023). Estado del arte de sistemas fotovoltaicos conectados a la red y tecnologías en el Ecuador. Dominio De Las Ciencias, 9(4), 1717–1730. https://doi.org/10.23857/dc.v9i4.3690

Número

Sección

Artí­culos Cientí­ficos