Anólisis bibliométrico sobre Learning Analytics en Latinoamérica
DOI:
https://doi.org/10.23857/dc.v6i4.1504Palabras clave:
AnalÃticas de aprendizaje, análisis bibliométrico, Instituciones de Educación Superior, Latino América.Resumen
El presente artículo revela la producción científica sobre las Analíticas de Aprendizaje (Learning Analytics en inglés – LA) en Latinoamérica (LATAM). Teniendo como objetivo realizar un anólisis bibliométrico de los estudios publicados por autores afiliados a IES de LATAM, relacionados con LA; haciendo bíºsquedas en las bases de datos científicas Scopus, Web of Science y Scielo. Los pasos de la metodología que se utilizó para la obtención de los resultados son los siguientes: 1) alcance de la investigación, 2) definición de las preguntas de investigación, 3) selección de las bases de datos y creación de las cadenas de bíºsquedas, 4) definición de los criterios de inclusión y exclusión y 5) extracción de los datos y respuestas a las preguntas de investigación. En los resultados se determinaron como objeto de estudio 197 artículos entre el periodo 2019 y octubre 2020. Ademós, en los resultados se detalla que los países con mayor cantidad de producción son: Brasil (34.55%), Ecuador (17.73%), Chile (15.45%), Colombia (10%) y México (9.09%). También, se determina que la Pontificia Universidad Católica de Chile (UC) tiene la mayor cantidad de producción científica con 13 artículos. En conclusión, no existe un sitio íºnico (observatorio), en donde se presente la información de los estudios realizados sobre LA que permita conocer sus avances en LATAM. Como trabajo futuro se pretende la creación de un observatorio web para la recopilación de investigaciones realizadas sobre LA.
Citas
Acero, A., Achury, J., & Morales, J. (2019). University dropout: A prediction model for an engineering program in bogotá, Colombia. 8th Research in Engineering Education Symposium: Making Connections, REES 2019, (págs. 483-490).
Agudelo-Londoño, S., Gorbanev, I., Delgadillo, V., Muñoz, ó., Cortes, A., González, R., & Pomares-Quimbaya, A. (2019). Development and Evaluation of a Serious Game for Teaching ICD-10 Diagnosis Coding to Medical Students. Games for Health Journal, 8(5), 349-356. doi:10.1089/g4h.2018.0101
Aguilar, J., Buendia, O., Pinto, A., & Gutií©rrez, J. (2019). Social learning analytics for determining learning styles in a smart classroom. Interactive Learning Environments, 1-17. doi:10.1080/10494820.2019.1651745
Alamri, A., Alshehri, M., Cristea, A., Pereira, F. O., Shi, L., & Stewart, C. (2019). Predicting MOOCs dropout using only two easily obtainable features from the first week’s activities. 15th International Conference on Intelligent Tutoring Systems, ITS 2019, (págs. 163-173). Kingston, Jamaica. doi:10.1007/978-3-030-22244-4_20
Alfaro, L., Rivera, C., & Luna-Urquizo, J. (2019). Using Project-based learning in a Hybrid e-Learning system model. International Journal of Advanced Computer Science and Applications, 10(10), 426-436. doi:10.14569/ijacsa.2019.0101059
Alharbi, K., Alrajhi, L., Cristea, A., Bittencourt, I., Isotani, S., & James, A. (2020). Data-Driven analysis of engagement in gamified learning environments: A methodology for real-time measurement of MOOCs. 16th International Conference on Intelligent Tutoring Systems, ITS 2020, 12149 LNCS, págs. 142-151. Athens, Greece. doi:10.1007/978-3-030-49663-0_18
Almeida, T., & De Magalhaes Netto, J. (2019). Adaptive Educational Resource Model to Promote Robotic Teaching in STEM Courses. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-8. Covington, United States. doi:10.1109/FIE43999.2019.9028417
Alonso-Mencía, M., Alario-Hoyos, C., Maldonado-Mahauad, J., Estí©vez-Ayres, I., Pí©rez-Sanagustín, M., & Delgado Kloos, C. (2019). Self-regulated learning in MOOCs: lessons learned from a literature review. Educational Review, 72(3), 319-345. doi:10.1080/00131911.2019.1566208
Altamirano, M., Jimí©nez, A., & Araya, R. (2020). Lessons clustering using topics inferred by unsupervised modeling from textbooks. 10th International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning, MIS4TEL 2020, 1241 AISC, págs. 85-94. L´Aquila, Italy. doi:10.1007/978-3-030-52538-5_10
Alvarez, C., Wise, A., Altermatt, S., & Aranguiz, I. (2019). Predicting academic results in a modular computer programming course. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 21-30. Valdivia, Chile.
Araya, R. (2020). Early detection of gender differences in reading and writing from a smartphone-based performance support system for teachers. 10th International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning, MIS4TEL 2020, 1241 AISC, págs. 137-146. L´Aquila, Italy. doi:10.1007/978-3-030-52538-5_15
Arevalo-Marin, P., Cabrera-Piedra, Y., Cabrera-Sarango, M., Caicedo-Rodriguez, J., Camacho-Veliz, A., Cartuche-Morocho, S., . . . Frei. (2019). Educational data mining to identify the relationship between IQ, learning styles, emotional intelligence and multiple intelligences of engineering students. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 48-63.
Atiaja Atiaja, L., & García Martínez, A. (2020). Proposal for an Integral System for Massive Open Online Courses (ISMOOC). 1st International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2019, 1154 CCIS, págs. 202-214. Quito, Ecuador. doi:10.1007/978-3-030-46785-2_17
Avila, C., Baldiris, S., Fabregat, R., & Graf, S. (2020). Evaluation of a learning analytics tool for supporting teachers in the creation and evaluation of accessible and quality open educational resources. British Journal of Educational Technology, 51(4), 1019-1038. doi:10.1111/bjet.12940
Baiocchi, R. (2019). Exploring data driven youth character education frameworks: A systematic literature review on learning analytics models and participatory design. Estudios Sobre Educacion, 37, 179-198. doi:10.15581/004.37.179-198
Bezerra, L., & Da Silva, M. (2019). Application of EDM to understand the online students' behavioral pattern. Journal of Information Technology Research, 12(3), 154-168. doi:10.4018/JITR.2019070109
Brandao, I., Da Costa, J., Santos, G., Praciano, B., Junior, F., & De S. Junior, R. (2019). Classification and predictive analysis of educational data to improve the quality of distance learning courses. 2019 Workshop on Communication Networks and Power Systems, WCNPS 2019, (págs. 1-6). Brasilia, Brazil. doi:10.1109/WCNPS.2019.8896312
Brito, M., Medeiros, F., & Bezerra, E. (2019). A report-type plugin to indicate dropout risk in the virtual learning environment moodle. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 127-128). Maceio, Brazil. doi:10.1109/ICALT.2019.00040
Brito, M., Medeiros, F., & Bezerra, E. (2019). An infographics based tool for monitoring dropout risk on distance learning in higher education. 18th International Conference on Information Technology Based Higher Education and Training, (págs. 1-7). Magdeburg, Germany. doi:10.1109/ITHET46829.2019.8937361
Broos, T., Hilliger, I., Pí©rez-Sanagustín, M., Htun, N., Millecamp, M., Pesántez-Cabrera, P., . . . De Laet, T. (2020). Coordinating learning analytics policymaking and implementation at scale. British Journal of Educational Technology, 51(4), 938-954. doi:10.1111/bjet.12934
Buenaño-Fernández, D., & Luján-Mora, S. (2019). Propuesta de aplicación de minería de procesos para evaluar las rutas de aprendizaje de estudiantes con discapacidad visual en cursos en línea. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 1035-1047.
Buenaño-Fernández, D., Gil, D., & Luján-Mora, S. (2019). Application of machine learning in predicting performance for computer engineering students: A case study. Sustainability (Switzerland), 11(10), 1-18. doi:10.3390/su11102833
Buenaño-Fernandez, D., Villegas-Ch, W., & Luján-Mora, S. (2019). The use of tools of data mining to decision making in engineering education—A systematic mapping study. Computer Applications in Engineering Education, 27(3), 744-758. doi:10.1002/cae.22100
Buitrago-Ropero, M., Ramírez-Montoya, M., & Chiappe-Laverde, A. (2020). Digital footprints (2005-2019): a systematic mapping of studies in education. Interactive Learning Environments, 1-14. doi:10.1080/10494820.2020.1814821
Cabala-Wilches, O., & Grisales-Palacio, V. (2019). Learning analytics in Colombia: A literature review and analysis of the local research effort. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 49-58. Valdivia, Chile.
Cabrera-Loayza, M., Cadme, E., Elizalde, R., & Piedra, N. (2020). Learning Analytics as a Tool to Support Teaching. 1st International Conference on Applied Technologies, ICAT 2019, 1195 CCIS, págs. 415-425. Quito, Ecuador. doi:10.1007/978-3-030-42531-9_33
Campoverde-Molina, M., Luján-Mora, S., & Valverde-Garcia, L. (2020). Empirical Studies on Web Accessibility of Educational Websites: A Systematic Literature Review. IEEE Access, 8, 91676-91700. doi:10.1109/ACCESS.2020.2994288
Cardozo-Gaibisso, L., Kim, S., Buxton, C., & Cohen, A. (2020). Thinking beyond the score: Multidimensional analysis of student performance to inform the next generation of science assessmentsJournal of Research in Science Teaching. Journal of Research in Science Teaching, 57(6), 856-878. doi:10.1002/tea.21611
Carvajal-Ortiz, L., Florian-Gaviria, B., & Diaz, J. (2019). Models, methods and software prototype to support the design, evaluation, and analysis in the curriculum management of competency-based for higher education. 45th Latin American Computing Conference, CLEI 2019, (págs. 1-10). Panama. doi:10.1109/CLEI47609.2019.235114
Cavalcanti, A., Diego, A., Ferreira Mello, R., Mangaroska, K., Nascimento, A., Freitas, F., & Gasevic, D. (2020). How good is my feedback? a content analysis ofWritten feedback. 10th International Conference on Learning Analytics and Knowledge: Shaping the Future of the Field, LAK 2020, (págs. 428-437). Frankfurt, Germany. doi:10.1145/3375462.3375477
Cechinel, C., Ochoa, X., Lemos dos Santos, H., Carvalho-Nunes, J., Rodí©s, V., & Marques-Queiroga, E. (2020). Mapping Learning Analytics Initiatives in Latin America. British Journal of Educational Technology, 51(4), 892-914. doi:10.1111/bjet.12941
Celis, S., López, D., & Silva, J. (2019). Analyzing the influence of online behaviors and learning approaches on academic performance in first year engineering. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 1-12. Valdivia, Chile.
Chango, W., Cerezo, R., & Romero, C. (2019). Predicting academic performance of university students from multi-sources data in blended learning. 2nd International Conference on Data Science, E-Learning and Information Systems, DATA 2019, (págs. 1-5). doi:10.1145/3368691.3368694
Chaves, V., García-Torres, M., Noguera, J., Oviedo, C., Esteche, A., Divina, F., & Marrufo-Vázquez, M. (2020). Analysis of Teacher Training in Mathematics in Paraguay’s Elementary Education System Using Machine Learning Techniques. 12th International Conference on Computational Intelligence in Security for Information Systems, CISIS 2019 and 10th International Conference on European Transnational Education, ICEUTE 2019, 951, págs. 285-294. Seville, Spain. doi:10.1007/978-3-030-20005-3_29
Chen, G., Rolim, V., Ferreira Mello, R., & Gasevic, D. (2020). Let's shine together! a comparative study between learning analytics and educational data mining. 10th International Conference on Learning Analytics and Knowledge: Shaping the Future of the Field, LAK 2020, (págs. 544-553). Frankfurt, Germany. doi:10.1145/3375462.3375500
Chevreux, H., Henríquez, V., Guerra, J., & Scheihing, E. (2019). Agile Development of Learning Analytics Tools in a Rigid Environment like a University: Benefits, Challenges and Strategies. 14th European Conference on Technology Enhanced Learning, EC-TEL 2019, 11722 LNCS, págs. 705-708. Delft, Netherlands. doi:10.1007/978-3-030-32475-9_2
Chicaiza, J., Cabrera-Loayza, M., Elizalde, R., & Piedra, N. (2020). Application of data anonymization in Learning Analytics. 3rd International Conference on Applications of Intelligent Systems, APPIS 2020. Gran Canaria, Spain. doi:10.1145/3378184.3378229
Codina, . (Febrero de 2017). Repositorio Digital de la UPF. Recuperado el 01 de 10 de 2020, de https://n9.cl/9t2w
Cornide-Reyes, H., Noí«l, R., Riquelme, F., Gajardo, M., Cechinel, C., Lean, R., . . . Munoz, R. (2019). Introducing low-cost sensors into the classroom settings: Improving the assessment in agile practices with multimodal learning analytics. Sensors (Switzerland), 19(15), 1-25. doi:10.3390/s19153291
Costa, L., Do Nascimento Salvador, L., Das Santos E Souza, M., & Rocha Amorim, R. (2019). Monitoring students performance in e-learning based on learning analytics and learning educational objectives. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 192-193). Maceio, Brazil. doi:10.1109/ICALT.2019.00067
Costa, L., Salvador, L., & Amorim, R. (2019). Evaluation of Academic Performance Based on Learning Analytics and Ontology: A Systematic Mapping Study. 48th Frontiers in Education Conference, FIE 2018, 2018-October, págs. 1-5. San Jose, United States. doi:10.1109/FIE.2018.8658936
Costa, L., Sanches, L., Salvador, L., & Souza, M. (2019). Um modelo ontológico para auxiliar os educadores na avaliaí§í£o do desempenho acadíªmico de alunos no ensino a distí¢ncia. 12th Seminar on Ontology Research in Brazil, ONTOBRAS 2019, 2519, págs. 1-7. Porto Alegre, Brazil.
Da Fonseca Silveira, R., Holanda, M., De Carvalho Victorino, M., & Ladeira, M. (2019). Educational data mining: Analysis of drop out of engineering majors at the UnB - Brazil. 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, (págs. 259-262). Boca Raton, United States. doi:10.1109/ICMLA.2019.00048
da Silva, L., Barbosa, M., & Gomes, R. (2019). Measuring Participation in Distance Education Online Discussion Forums Using Social Network Analysis. Journal of the Association for Information Science and Technology, 70(2), 140-150. doi:10.1002/asi.24080
Damasceno, A., Ribeiro, D., & Barbosa, S. (2019). What the Literature and Instructors Say about the Analysis of Student Interaction Logs on Virtual Learning Environments. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-9. Covington, United State. doi:10.1109/FIE43999.2019.9028398
de Brandí£o Damasceno, A., dos Santos Ribeiro, D., & Barbosa, S. (2019). Visualizing Student Interactions to Support Instructors in Virtual Learning Environments. 13th International Conference on Universal Access in Human-Computer Interaction, UAHCI 2019, held as part of the 21st International Conference on Human-Computer Interaction, HCI International 2019, 11572 LNCS, págs. 445-464. Orlando, United States. doi:10.1007/978-3-030-23560-4_33
De Campos, A., & Cazella, S. (2019). Learning analytics and cognitive computing to support personalized learning experiences. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 389-391). Maceio, Brazil. doi:10.1109/ICALT.2019.00120
de Carvalho, S., de Melo, F., Flores, E., Pires, S., & Loja, L. (2020). Intelligent tutoring system using expert knowledge and Kohonen maps with automated training. Neural Computing and Applications, 32(17), 13577-13589. doi:10.1007/s00521-020-04767-0
De la Vega Rodríguez, L. F. (2019). School Improvement Trajectories in Chile: a case study. Educaí§í£o & Realidade, 44(4), 1-22. doi:10.1590/2175-623683185
De Laet, T., Millecamp, M., Ortiz-Rojas, M., A., J., Maya, R., & Verbert, K. (2020). Adoption and impact of a learning analytics dashboard supporting the advisor—Student dialogue in a higher education institute in Latin America. British Journal of Educational Technology, 51(4), 1002-1018. doi:10.1111/bjet.12962
de Lima, D., Gerosa, M., Conte, T., & de M. Netto, J. (2019). What to expect, and how to improve online discussion forums: the instructors’ perspective. Journal of Internet Services and Applications, 10(1), 1-15. doi:10.1186/s13174-019-0120-0
De Pontes, R., Guerrero, D., & De Figueiredo, J. (2019). Analyzing gamification impact on a mastery learning introductory programming course. 50th ACM Technical Symposium on Computer Science Education, SIGCSE 2019, (págs. 400-406). Minneapolis, United States. doi:10.1145/3287324.3287367
De Souza, A., Barcelos, T., Munoz, R., Villarroel, R., & Silva, L. (2019). Data Mining Framework to Analyze the Evolution of Computational Thinking Skills in Game Building Workshops. IEEE Access, 7, 82848-82866. doi:10.1109/ACCESS.2019.2924343
Delgado-Quintero, D. G.-B., Aranda-Lozano, D., Munevar-Garcia, P., & Diaz, C. (2019). Academic behavior analysis in virtual courses using a data mining approach. 2nd International Conference on Applied Informatics, ICAI 2019, 1051 CCIS, págs. 17-31. Madrid, Spain. doi:10.1007/978-3-030-32475-9_2
Diaz Pedroza, K., Chindoy Chasoy, B., & Rosado Gómez, A. (2019). Review of techniques, tools, algorithms and attributes for data mining used in student desertion. 6th International Meeting of Technological Innovation, IMTI 2019, 1409, págs. 1-7. Ocana, Colombia. doi:10.1088/1742-6596/1409/1/012003
Dos Santos, H., Cechinel, C., Nunes, J., & Ochoa, X. (2017). An Initial Review of Leanrnig Analytics in Latin America. 12th Latin American Conference on Learning Objects and Technologies, LACLO 2017, (págs. 1-9). La Plata, Argentina. doi:10.1109/LACLO.2017.8120913
Duque-Mí©ndez, N., Hernández-Leal, E., & Cadavid, J. (2019). Analysis of data in an educational platform with MMOG features. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425. Valdivia, Chile.
Echeverria, V., Martinez-Maldonado, R., & Shum, S. (2019). Towards collaboration translucence: Giving meaning to multimodal group data. 2019 CHI Conference on Human Factors in Computing Systems, (págs. 1-16). Glasgow, United Kingdom. doi:10.1145/3290605.3300269
Escudero-Nahón, A., & Mercado López, E. (2019). Uso del análisis de aprendizajes en el aula invertida: una revisión sistemática. Apertura (Guadalajara, Jal.), 11(2), 72-85. doi:10.32870/ap.v11n2.1546
Espinoza-Portilla, E., Lioo-Jordán, F., & Villanueva-Cadenas, G. (2018). Análisis bibliomí©trico de las publicaciones peruanas relacionadas a resistencia antimicrobiana en SCOPUS (1992-2017). Horizonte Mí©dico (Lima), 18(4), 75-80. doi:10.24265/horizmed.2018.v18n4.11
Etemadpour, R., Zhu, Y., Zhao, Q., Hu, Y., Chen, B., Asif Sharier, M., . . . Paiva, J. (2019). Academic performance analysis supported by a web-based visual analytics tool. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 158-162). Maceio, Brazil. doi:10.1109/ICALT.2019.00059
Etemadpour, R., Zhu, Y., Zhao, Q., Hu, Y., Chen, B., Sharier, M., . . . S. Paiva, J. (2020). Role of absence in academic success: an analysis using visualization tools. Smart Learning Environments, 7(1), 1-25. doi:10.1186/s40561-019-0112-3
Falcao, T., Ferreira Mello, R., Lins Rodrigues, R., Diniz, J., Tsai, Y.-S., & Gasevic, D. (2020). Perceptions and expectations about Learning Analytics from a Brazilian Higher Education Institution. 10th International Conference on Learning Analytics and Knowledge: Shaping the Future of the Field, LAK 2020, (págs. 240-249). Frankfurt, Germany. doi:10.1145/3375462.3375478
Ferreira-Mello, R., Andrí© M., P. A., & Costa E., R. C. (2019). Text mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(6), 1-49. doi:10.1002/widm.1332
Ferrero, F., & Gewerc Barujel, A. (2019). Algorithmic driven decision-making systems in education: Analyzing bias from the sociocultural perspective. 14th Latin American Conference on Learning Technologies, LACLO 2019, (págs. 166-173). Baja California Sur, Mexico. doi:10.1109/LACLO49268.2019.00038
Fiallos, A., & Ochoa, X. (2019). Semi-automatic generation of intelligent curricula to facilitate learning analytics. 9th International Conference on Learning Analytics and Knowledge, LAK 2019, (págs. 46-50). Tempe, United States. doi:10.1145/3303772.3303834
Fierro-Saltos, W., & Maldonado, C. (2019). Predictive models for the detection of problems in autonomous learning in higher education students virtual modality [Modelos predictivos para la detección de problemas en el aprendizaje autónomo en estudiantes de educación superior modalidad virtual]. Iberian Conference on Information Systems and Technologies, CISTI, 2019-June, págs. 1-6. Coimbra, Portugal. doi:10.23919/CISTI.2019.8760605
Fierro-Saltos, W., Sanz, C., Zangara, A., Guevara, C., Arias-Flores, H., Castillo-Salazar, D., . . . Yandíºn-Velasteguí, M. (2019). Autonomous Learning Mediated by Digital Technology Processes in Higher Education: A Systematic Review. 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications, IHSED 2019, 1026, págs. 65-71. Munich, Germany. doi:10.1007/978-3-030-27928-8_11
Finamore, A., Jimí©nez, H., Casanova, M., Nunes, B., Santos, A., & Pires, A. (2020). A comparative analysis of two computer science degree offerings. Journal of the Brazilian Computer Society, 26(1). doi:10.1186/s13173-020-00097-0
Freitas, E., Fonseca, F., Garcia, V., & Cardoso Garcia, V. (2019). Learning analytics: A brief overview about applications and its advantages. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 190-191). Maceio, Brazil. doi:10.1109/ICALT.2019.00064
Gavilanes-Sagnay, F., Loza-Aguirre, E., Riofrío-Luzcando, D., & Segura-Morales, M. (2019). Improving the use of virtual worlds in education through learning analytics: A state of art. Future Technologies Conference, 880, págs. 1123-1132. BC, Canada. doi:10.1007/978-3-030-02686-8_83
Gomez, M., Moresi, M., & Benotti, L. (2019). Text-based Programming in Elementary School: A Comparative Study of Programming Abilities in Children with and without Block-based Experience. 2019 ACM Conference on Innovation and Technology in Computer Science Education, ITiCSE 2019, (págs. 402-408). Aberdeen, United Kingdom. doi:10.1145/3304221.3319734
Guajardo Leal, B., Valenzuela González, J., & Scott, J. (2019). Student engagement as a predictor of xMOOC completion: An analysis from five courses on energy sustainability. Online Learning Journal, 23(2), 105-123. doi:10.24059/olj.v23i2.1523
Guerra, J., Ortiz-Rojas, M., Zíºñiga-Prieto, M., Scheihing, E., Jimí©nez, A., Broos, T., . . . Verbert, K. (2020). Adaptation and evaluation of a learning analytics dashboard to improve academic support at three Latin American universities. British Journal of Educational Technology, 51(4), 973-1001. doi:10.1111/bjet.12950
Guerra, J., Scheihing, E., Henríquez, V., Olivares-Rodríguez, C., & Chevreux, H. (2019). TrAC: Visualizing Students Academic Trajectories. 14th European Conference on Technology Enhanced Learning, EC-TEL 2019, 11722 LNCS, págs. 765-768. Delft, Netherlands. doi:10.1007/978-3-030-29736-7_84
Guerra, L., & Arciniegas, S. (2019). Academic management through the visualization of information [Gestión Acadí©mica a traví©s de la visualización de la información]. 14th Iberian Conference on Information Systems and Technologies, CISTI 2019, 2019-June, págs. 1-5. Portugal. doi:10.23919/CISTI.2019.8760770
Guerra, L., Rivero, D., Díaz, E., & Arciniegas, S. (2020). Trends in information models on retention-university dropout [Tendencias en modelos informativos sobre la retención – deserción universitaria]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020(E26), 55-68.
Guevara, C., Sanchez-Gordon, S., Arias-Flores, H., Varela-Aldás, J., Castillo-Salazar, D., Borja, M., . . . Yandíºn-Velasteguí, M. (2020). Detection of Student Behavior Profiles Applying Neural Networks and Decision Trees. 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications, IHSED 2019, 1026, págs. 591-597. Munich, Germany. doi:10.1007/978-3-030-27928-8_90
Guilleumas-García, R., Sánchez-Gómez, M., Mena, J., & Pinto-Llorente, A. (2020). Students’ Perception of Distributed Teaching Presence in Discussion Forums. A Case Study. En Lecture Notes in Networks and Systems (págs. 249-270). doi:10.1007/978-3-030-45781-5_12
Gutií©rrez, F., Seipp, K., Ochoa, X., Chiluiza, K., De Laet, T., & Verbert, K. (2020). LADA: A learning analytics dashboard for academic advising. Computers in Human Behavior, 107, 1-13. doi:10.1016/j.chb.2018.12.004
Gutií©rrez, L., Flores, V., Keith, B., & Quelopana, A. (2019). Using the Belbin method and models for predicting the academic performance of engineering students. Computer Applications in Engineering Education, 27(2), 500-509. doi:10.1002/cae.22092
Henriques, R., Finamore, A., & Casanova, M. (2019). On the discovery of educational patterns using biclustering. 15th International Conference on Intelligent Tutoring Systems, ITS 2019, 11528 LNCS, págs. 133-144. Kingston, Jamaica. doi:10.1007/978-3-030-22244-4_17
Hernandez-de-Menendez, M., & Morales-Menendez, R. (2019). Technological innovations and practices in engineering education: a review. International Journal on Interactive Design and Manufacturing, 13(2), 713-728. doi:10.1007/s12008-019-00550-1
Hilliger, I., Aguirre, C., Miranda, C., Celis, S., & Pí©rez-Sanagustín, M. (2020). Design of a Curriculum Analytics Tool to Support Continuous Improvement Processes in Higher Education. 10th International Conference on Learning Analytics and Knowledge: Shaping the Future of the Field, LAK 2020, (págs. 181-186). Frankfurt, Germany. doi:10.1145/3375462.3375489
Hilliger, I., Miranda, C., Celis, S., & Pí©rez-SanAgustín, M. (2019). Evaluating usage of an analytics tool to support continuous curriculum improvement. 14th European Conference on Technology Enhanced Learning, ECTEL 2019, 2437, págs. 1-24. Delft, Netherlands.
Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P., . . . Pí©rez-Sanagustín, M. (2020). Identifying needs for learning analytics adoption in Latin American universities: A mixed-methods approach. Internet and Higher Education, 45, 1-9. doi:10.1016/j.iheduc.2020.100726
Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P., . . . Pí©rez-Sanagustín, M. (2020). Towards learning analytics adoption: A mixed methods study of data-related practices and policies in Latin American universities. British Journal of Educational Technology, 51(4), 915-937. doi:10.1111/bjet.12933
Holanda, A., Tedesco, P., Oliveira, E., & Gomes, T. (2020). MOOCOLAB - A customized collaboration framework in massive open online courses. 16th International Conference on Intelligent Tutoring Systems, ITS 2020, 12149 LNCS, págs. 125-131. Athen, Greece. doi:10.1007/978-3-030-49663-0_16
Hoyos, A., & Velasquez, J. (2020). Teaching Analytics: Current Challenges and Future Development. Revista Iberoamericana de Tecnologias del Aprendizaje, 15(1), 1-9. doi:10.1109/RITA.2020.2979245
Isaias, P., & V.A., B.-N. (2020). On the Design of a Teachers’ Dashboard: Requirements and Insights. 7th International Conference on Learning and Collaboration Technologies, LCT 2020, held as part of the 22nd International Conference on Human-Computer Interaction, HCII 2020, 12205 LNCS, págs. 255-269. Copenhagen, Denmark. doi:10.1007/978-3-030-50513-4_19
Juma, A., Rodríguez, J., Caraguay, J., Naranjo, M., Quiña-Mera, A., & García-Santillán, I. (2019). Integration and evaluation of social networks in virtual learning environments: A case study. 4th International Conference on Technology Trends, CITT 2018, 895, págs. 245-258. Babahoyo; Ecuador. doi:10.1007/978-3-030-05532-5_18
LALA. (2019). LALA Project. Recuperado el 12 de 07 de 2020, de https://n9.cl/powa
Landron-Rivera, B., Santiago, N., Santiago, A., & Vega-Riveros, J. (2019). Text classification of student predicate use for automatic misconception categorization. 48th Frontiers in Education Conference, FIE 2018, 2018-October, págs. 1-8. San Jose, United States. doi:10.1109/FIE.2018.8658680
Lins Rodrigues, R., Ramos, J., Silva, J., Dourado, R., & Gomes, A. (2019). Forecasting students' performance through self-regulated learning behavioral analysis. International Journal of Distance Education Technologies, 17(3), 52-74. doi:10.4018/IJDET.2019070104
López Tavares, D., Perkins, K., Kauzmann, M., & Aguirre Velez, C. (2019). Towards a teacher dashboard design for interactive simulations. GIREP-MPTL 2018 Conference, 1287, págs. 1-12. San Sebastian, Spain. doi:10.1088/1742-6596/1287/1/012055
López-Zambrano, J., Lara, J., & Romero, C. (2020). Towards portability of models for predicting students' final performance in university courses starting from moodle logs. Applied Sciences (Switzerland), 10(1), 1-23. doi:10.3390/app10010354
Macarini, L., Cechinel, C., Machado, M., Ramos, V., & Munoz, R. (2019). Predicting students success in blended learning-Evaluating different interactions inside learning management systems. Applied Sciences (Switzerland), 9(24), 1-23. doi:10.3390/app9245523
Macarini, L., Lemos dos Santos, H., Cechinel, C., Ochoa, X., Rodí©s, V., Pí©rez Casas, A., . . . Díaz, P. (2020). Towards the implementation of a countrywide K-12 learning analytics initiative in Uruguay. Interactive Learning Environments, 28(2), 166-190. doi:10.1080/10494820.2019.1636082
Macarini, L., Ochoa, X., Cechinel, C., Rodí©s, V., Dos Santos, H., Alonso, G., . . . Díaz, P. (2019). Challenges on implementing learning analytics over countrywide K-12 data. 9th International Conference on Learning Analytics and Knowledge, LAK 2019, (págs. 441-445). Tempe, United States. doi:10.1145/3303772.3303819
MacCann-Alfaro, N., García-Valcárcel, A., & Morales-Morga, E. (2019). Use of ICT to promote and analyze argumentative and metacognitive processes in higher education. 7th International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM 2019, (págs. 1028-1033). Leon, Spain. doi:10.1145/3362789.3362927
Manzano Nunez, R., & García Perdomo, H. (2016). Sobre los criterios de inclusión y exclusión. Más allá de la publicación. Revista Chilena de Pediatría, 87(6), 511-512. doi:10.1016/j.rchipe.2016.05.003
Marcolino, A., Praca, E., & Silva, E. (2019). Towards A Practical Approach to Improve the Interdisciplinary Teaching and Learning Process through M-learning Innovative Projects. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-5. Covington, United States. doi:10.1109/FIE43999.2019.9028498
Márquez, A., Poot, A., Arenas, A., & Luna, G. (2020). Ancone: An interactive system for mining and visualization of students’ information in the context of planea 2015. Computacion y Sistemas, 24(1), 151-176. doi:10.13053/CyS-24-1-3113
Martinez-Maldonado, R., Schulte, J., Echeverria, V., Gopalan, Y., & Shum, S. (2020). Where is the teacher? Digital analytics for classroom proxemics. Journal of Computer Assisted Learning, 36(5), 741-762. doi:10.1111/jcal.12444
Massa, S., & Kuhn, F. (2019). Learning Analytics in Serious Games: A systematic review of literature. 2018 IEEE Biennial Congress of Argentina, ARGENCON 2018, (págs. 1-5). San Miguel de Tucuman, Argentina. doi:10.1109/ARGENCON.2018.8646166
Medina López, C., Marín García, J., & Alfalla Luque, R. (2010). Una propuesta metodológica para la realización de bíºsquedas sistemáticas de bibliografía. 1(2), 13-30. doi:10.4995/wpom.v1i2.786
Medina, E., Chunga, C., Armas-Aguirre, J., & Grandon, E. (2020). Predictive model to reduce the dropout rate of university students in Períº: Bayesian Networks vs. Decision Trees [Modelo predictivo para reducir el índice de deserción de estudiantes universitarios en el Períº: Redes Bayesianas vs. árboles de Decisión]. 15th Iberian Conference on Information Systems and Technologies, CISTI 2020, 2020-June, págs. 1-7. Seville, Spain. doi:10.23919/CISTI49556.2020.9141095
Mellado, R., Blanco, M., Cubillos, C., Fuente, H., & Faundez, A. (2019). Learning of Information Technologies in Administration Sciences through gamification techniques. 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019, (págs. 1-7). Valparaiso, Chile. doi:10.1109/CHILECON47746.2019.8988017
Mendoza, S., Hernández-León, M., Sánchez-Adame, L., Rodríguez, J., Decouchant, D., & Meneses-Viveros, A. (2020). Supporting student-teacher interaction through a chatbot. 7th International Conference on Learning and Collaboration Technologies, LCT 2020, held as part of the 22nd International Conference on Human-Computer Interaction, HCII 2020, 12206 LNCS, págs. 93-107. Copenhagen, Denmark. doi:10.1007/978-3-030-50506-6_8
Miranda, C., Goñi, J., Hilliger, I., & Lugo, J. (2020). Assessing the work of geographically distributed teams in engineering-design: Time allocation in the design process as a form of in-class analytics. International Journal of Engineering Education, 36(1 B), 399-410.
Moissa, B., Gasparini, I., & Kemczinski, A. (2015). A Systematic Mapping on the Learning Analytics Field and Its Analysis in the Massive Open Online Courses Context. International Journal of Distance Education Technologies (IJDET), 13(3), 1-24. doi:10.4018/IJDET.2015070101
Montilla-Peña, L. (2012). Análisis bibliomí©trico sobre la producción científica archivística en la Red de Revistas Científicas de Amí©rica Latina y el Caribe (Redalyc) durante el período 2001-2011. Revista de Bibliotecnología y Ciencias de la Información(48), 1-11. doi:10.5195/biblios.2012.65
Morales, M., De La Roca, M., Barchino, R., Hernandez, R., & Amado-Salvatierra, H. (2019). Applying a Digital Learning Ecosystem to Increase the Effectiveness of a Massive Open Online Course. 2019 IEEE Learning With MOOCS, LWMOOCS 2019, (págs. 69-74). Milwaukee, United States. doi:10.1109/LWMOOCS47620.2019.8939636
Moreno, J., & Pineda, A. (2020). A Framework for Automated Formative Assessment in Mathematics Courses. IEEE Access, 8, 30152-30159. doi:10.1109/ACCESS.2020.2973026
Moreno-Marcos, P., Muñoz-Merino, P., Maldonado-Mahauad, J., Pí©rez-Sanagustín, M., Alario-Hoyos, C., & Delgado Kloos, C. (2020). Temporal analysis for dropout prediction using self-regulated learning strategies in self-paced MOOCs. Computers and Education, 145. doi:10.1016/j.compedu.2019.103728
Morfín Otero, M., González Quintanilla, C., & Palomera Pí©rez, B. (2019). La influencia del orden de materias en el aprendizaje de adultos en cursos en línea. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, 14-21. doi:10.24215/18509959.23.e02
Moscoso-Zea, O., Castro, J., Paredes-Gualtor, J., & Luján-Mora, S. (2019). A Hybrid Infrastructure of Enterprise Architecture and Business Intelligence Analytics for Knowledge Management in Education. IEEE Access, 7, 38778-38788. doi:10.1109/ACCESS.2019.2906343
Moscoso-Zea, O., Saa, P., & Luján-Mora, S. (2019). Evaluation of algorithms to predict graduation rate in higher education institutions by applying educational data mining. Australasian Journal of Engineering Education, 24(1), 4-13. doi:10.1080/22054952.2019.1601063
Mosquera, D., Guevara, C., & Aguilar, J. (2019). Adaptive learning objects in the context of eco-connectivist communities using learning analytics. Heliyon, 5(11), 1-14. doi:10.1016/j.heliyon.2019.e02722
Netto Silveira, P., Cury, D., Silva De Menezes, C., & Lube Dos Santos, O. (2019). A predictive model of academic failure or success for institutional and trace data. 14th Latin American Conference on Learning Technologies, LACLO 2019, (págs. 162-165). Baja California Sur, Mexico. doi:10.1109/LACLO49268.2019.00037
Nieto, Y., Gacia-Diaz, V., Montenegro, C., Gonzalez, C., & Gonzalez Crespo, R. (2019). Usage of Machine Learning for Strategic Decision Making at Higher Educational Institutions. IEEE Access, 7, 75007-75017. doi:10.1109/ACCESS.2019.2919343
Nieto, Y., García-Díaz, V., Montenegro, C., & Crespo, R. (2019). Supporting academic decision making at higher educational institutions using machine learning-based algorithms. Soft Computing, 23(12), 4145-4153. doi:10.1007/s00500-018-3064-6
Nunes, J., Sales, V., & Chaves, J. (2019). Learning analytics in mathematics teacher education at the Ceará State University. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 100-109. Valdivia, Chile.
Ocaña, M., Khosravi, H., & Bakharia, A. (2019). Profiling language learners in the big data era. 36th International Conference of Innovation, Practice and Research in the Use of Educational Technologies in Tertiary Education: Personalised Learning. Diverse Goals. One Heart, ASCILITE 2019, (págs. 237-245). Singapore.
Ochoa, X., & Merceron, A. (2018). Quantitative and Qualitative Analysis of the Learning Analytics and Knowledge Conference 2018. Journal of Learning Analytics, 5, 154-166. doi:https://doi.org/10.18608/jla.2018.53.10
Okoye, K., Nganji, J., & Hosseini, S. (2020). Learning analytics for educational innovation: A systematic mapping study of early indicators and success factors. International Journal of Computer Information Systems and Industrial Management Applications, 12, 138-154.
Olaya, D., Vásquez, J., Maldonado, S., Miranda, J., & Verbeke, W. (2020). Uplift Modeling for preventing student dropout in higher education. Decision Support Systems, 134, 1-38. doi:10.1016/j.dss.2020.113320
Oliva Córdova, L., Amado-Salvatierra, H., & Villalba Condori, K. (2019). An Experience Making Use of Learning Analytics Techniques in Discussion Forums to Improve the Interaction in Learning Ecosystems. 6th International Conference on Learning and Collaboration Technologies, LCT 2019, 11590 LNCS, págs. 64-76. Orlando,United States. doi:10.1007/978-3-030-21814-0_6
Oliva-Córdova, L., Amado-Salvatierra, H., Monterroso, L., Bojórquez-Roque, M., & Villalba-Condori, K. (2019). A learning analytics experience using interaction visualization dashboards to support virtual tutoring [Una experiencia de analíticas de aprendizaje utilizando tableros de visualización de interacciones como soporte a la tutoría virtual]. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 69-78. Valdivia, Chile.
Olivares, D., Ferreira Mello, R., Adesope, O., Rolim, V., Gasevic, D., & Hundhausen, C. (2019). Using social network analysis to measure the effect of learning analytics in computing education. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 145-149). Maceio, Brazil. doi:10.1109/ICALT.2019.00044
Oliveira, M., Barwaldt, R., Pias, M., & Espindola, D. (2019). Understanding the Student Dropout in Distance Learning. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-7. Covington, United States. doi:10.1109/FIE43999.2019.9028433
Ortega C., J., Gómez A., H., Villavicencio A., V., Lozada T., E., & Naranjo C., F. (2019). Relationship between context-social and academic performance: First notes. 14th International Conference on Knowledge Management in Organizations, KMO 2019, 1027, págs. 403-415. Zamora, Spain. doi:10.1007/978-3-030-21451-7_35
Ortiz-Rojas, M., Maya, R., Jimenez, A., Hilliger, I., & Chiluiza, K. (2019). A step by step methodology for software design of a learning analytics tool in Latin America: A case study in Ecuador. 14th Latin American Conference on Learning Technologies, LACLO 2019, (págs. 116-122). Baja California Sur,Mexico. doi:10.1109/LACLO49268.2019.00029
Oyelere, S., Silveira, I., Martins, V., Eliseo, M., Akyar, í–., Costas Jauregui, V., . . . Tomczyk, Å. (2020). Digital Storytelling and Blockchain as Pedagogy and Technology to Support the Development of an Inclusive Smart Learning Ecosystem. 8th World Conference on Information Systems and Technologies, WorldCIST 2020, 1161 AISC, págs. 397-408. Budva, Montenegro. doi:10.1007/978-3-030-45697-9_39
Pascal, G., Tornillo, J., Minnaard, C., & Comoglio, M. (2019). Data mining to increase teaching performance in engineering education. 8th International Conference on Educational and Information Technology, ICEIT 2019, Part F148151, págs. 308-311. Cambridge, United Kingdom. doi:10.1145/3318396.3318433
Pazmiño-Maji, R., Naranjo-Ordíµez, L., Conde-González, M., & García-Peñalvo, F. (2019). Learning Analytics in Ecuador: An Initial Analysis based in a Mapping Review. 7th International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM 2019, (págs. 304-311). Leon, Spain. doi:10.1145/3362789.3362913
Penteado, B., Isotani, S., Paiva, P., Marina, M.-Z., & Ferrari, D. (2019). Detecting behavioral trajectories in continued education online courses. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 179-180). Maceio, Brazil. doi:10.1109/ICALT.2019.00069
Penteado, B., Isotani, S., Paiva, P., Morettin-Zupelari, M., & Ferrari, D. (2019). Discovery of study patterns that impacts students’ discussion performance in forum assignments. 20th International Conference on Artificial Intelligence in Education, AIED 2019, 11626 LNAI, págs. 220-225. Chicago, United States. doi:10.1007/978-3-030-23207-8_41
Peña, M., Bravo, F., & Illescas-Peña, L. (2019). Learning analytics, dashboard for academic trajectory [Analítica del aprendizaje, visualización de trayectoria acadí©mica]. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 1-11. Valdivia, Chile.
Peral, J., Ferrández, A., Mora, H., Gil, D., & Kauffmann, E. (2019). A Review of the Analytics Techniques for an Efficient Management of Online Forums: An Architecture Proposal. IEEE Access, 7, 12220-12240. doi:10.1109/ACCESS.2019.2892987
Pereira, F., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., . . . Alshehri, M. (2019). Early dropout prediction for programming courses supported by online judges. 20th International Conference on Artificial Intelligence in Education, AIED 2019, 11626 LNAI, págs. 67-72. Chicago, United States. doi:10.1007/978-3-030-23207-8_13
Pereira, F., Oliveira, E., Fernandes, D., & Cristea, A. (2019). Early performance prediction for cs1 course students using a combination of machine learning and an evolutionary algorithm. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 183-184). Maceio, Brazil. doi:10.1109/ICALT.2019.00066
Pereira, F., Oliveira, E., Oliveira, D., Cristea, A., Carvalho, L., Fonseca, S., . . . Isotani, S. (2020). Using learning analytics in the Amazonas: understanding students’ behaviour in introductory programming. British Journal of Educational Technology, 51(4), 955-972. doi:10.1111/bjet.12953
Pereira, F., Toda, A., Oliveira, E., Cristea, A., Isotani, S., Laranjeira, D., . . . Mendoní§a, J. (2020). Can we use gamification to predict students’ performance? A case study supported by an online judge. 16th International Conference on Intelligent Tutoring Systems, ITS 2020, 12149 LNCS, págs. 259-269. Athens, Greece. doi:10.1007/978-3-030-49663-0_30
Pereira, H., Souza, A., & Menezes, C. (2019). Obtaining evidence of learning in digital games through a deep learning neural network to classify facial expressions of the players. 48th Frontiers in Education Conference, FIE 2018, 2018-October, págs. 1-8. San Jose, United States. doi:10.1109/FIE.2018.8659216
Pí©rez-Sanagustín, M., Sharma, K., Pí©rez-álvarez, R., Maldonado-Mahauad, J., & Broisin, J. (2019). Analyzing Learners’ Behavior Beyond the MOOC: An Exploratory Study. 14th European Conference on Technology Enhanced Learning, EC-TEL 2019, 11722 LNCS, págs. 40-54. Delft, Netherlands. doi:10.1007/978-3-030-29736-7_4
Pimentel, M., Martins, D., Yaguinuma, C., & Zaine, I. (2019). Anchoring interactive points of interest on web-based instructional video: Effects on students' interaction behavior and perceived experience. 34th Annual ACM Symposium on Applied Computing, SAC 2019, Part F147772, págs. 2445-2452. Limassol, Cyprus. doi:10.1145/3297280.3297521
Pineda, A., & Cadavid, J. (2019). Traceability of learning activities in computer programming courses using an automatic online judge within an LMS [Trazabilidad de actividades de aprendizaje en cursos de programación de computadores usando un juez automático en línea dentro de un LMS]. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 122-131. Valdivia, Chile.
Pinheiro Cavalcanti, A., Ferreira Mello, R., Rolim, V., Andrí©, M., Freitas, F., & Gasevic, D. (2019). An analysis of the use of good feedback practices in online learning courses. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 153-157). Maceio, Brazil. doi:10.1109/ICALT.2019.00061
Pinheiro, S., Oliveira-Esquerre, K., Martins, M., & Oliveira, R. (2020). Modeling the quantification of engineering students' academic performance and its association to dropout rates. International Journal of Engineering Education, 36(1 A), 201-212.
Pishtari, G., Rodríguezâ€Triana, M., Sarmientoâ€Márquez, E., Pí©rezâ€Sanagustín, M., Ruizâ€Calleja, A., Santos, P., . . . Ví¤ljataga, T. (2019). Learning design and learning analytics in mobile and ubiquitous learning: A systematic review. British Journal of Educational Technology, 51(4), 1078-1100. doi:10.1111/bjet.12944
Pontual Falcí£o, T., Ferreira Mello, R., & Lins Rodrigues, R. (2020). Applications of learning analytics in Latin America. British Journal of Educational Technology, 51(4), 871-874. doi:10.1111/bjet.12978
Pontual Falcí£o, T., Ferreira Mello, R., Lins Rodrigues, R., Diniz, J., & Gasevic, D. (2019). Students' perceptions about learning analytics in a brazilian higher education institution. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 204-206). Maceio, Brazil. doi:10.1109/ICALT.2019.00049
Procaci, T., Siqueira, S., Pereira Nunes, B., & Nurmikko-Fuller, T. (2019). Experts and likely to be closed discussions in question and answer communities: An analytical overview. Computers in Human Behavior, 92, 519-535. doi:10.1016/j.chb.2018.06.004
Queiroga, E., Lopes, J., Kappel, K., Aguiar, M., Araíºjo, R., Munoz, R., . . . Cechinel, C. (2020). A learning analytics approach to identify students at risk of dropout: A case study with a technical distance education course. Applied Sciences (Switzerland), 10(11), 1-20. doi:10.3390/app10113998
Ramirez-Arellano, A. (2019). Students learning pathways in higher blended education: An analysis of complex networks perspective. Computers and Education, 141, 1-15. doi:10.1016/j.compedu.2019.103634
Raza, M., Faria, J., & Salazar, R. (2019). Assisting software engineering students in analyzing their performance in software development. Software Quality Journal, 27(3), 1209-1237. doi:10.1007/s11219-018-9433-7
Recalde, H., Egas, P., Saltos, M., & Toasa, R. (2020). Data mining with R for academic information in higher Education Institutions. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020(E25), 63-71.
Reyes, N., Morales, J., Moya, J., Teran, C., Rodriguez, D., & Altamirano, G. (2019). Model to predict academic performance based on neural networks and learning analytics. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao(E17), 258-266.
Ribeiro, R., & Canedo, E. (2020). Using Data Mining Techniques to Perform School Dropout Prediction: A Case Study. 17th International Conference on Information Technology: New Generations, ITNG 2020, 1134, págs. 211-217. Las Vegas, United States. doi:10.1007/978-3-030-43020-7_28
Rincon-Flores, E., Lopez-Camacho, E., Mena, J., & Lopez, O. (2020). Predicting academic performance with Artificial Intelligence (AI), a new tool for teachers and students. 11th IEEE Global Engineering Education Conference, EDUCON 2020, 2020-April, págs. 1049-1054. Porto, Portugal. doi:10.1109/EDUCON45650.2020.9125141
Rincón-Flores, E., Mena, J., López-Camacho, E., & Olmos, O. (2019). Adaptive learning based on AI with predictive algorithms. 7th International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM 2019, (págs. 607-612). Leon, Spain. doi:10.1145/3362789.3362869
Riofrío-Luzcando, D., Ramírez, J., Moral, C., de Antonio, A., & Berrocal-Lobo, M. (2019). Visualizing a collective student model for procedural training environments. Multimedia Tools and Applications, 78(8), 10983-11010. doi:10.1007/s11042-018-6641-x
Riquelme, F., Munoz, R., Mac Lean, R., Villarroel, R., Barcelos, T., & de Albuquerque, V. (2019). Using multimodal learning analytics to study collaboration on discussion groups: A social network approach. Universal Access in the Information Society, 18(3), 633-643. doi:https://doi.org/10.1007/s10209-019-00683-w
Riquelme, F., Noel, R., Cornide-Reyes, H., Geldes, G., Cechinel, C., Miranda, D., . . . Munoz, R. (2020). Where are You? Exploring Micro-Location in Indoor Learning Environments. IEEE Access, 8, 125776-125785. doi:10.1109/ACCESS.2020.3008327
Rodríguez, A., Riaño, M., García, P., Marín, C., Crespo, R., & Wu, X. (2020). Emotional characterization of children through a learning environment using learning analytics and AR-Sandbox. Journal of Ambient Intelligence and Humanized Computing, 1-15. doi:10.1007/s12652-020-01887-2
Rodriguez-Paz, M., Gonzalez-Mendivil, J., Zarate-Garcia, J., Zamora-Hernandez, I., & Nolazco-Flores, J. (2020). A hybrid flipped-learning model and a new learning-space to improve the performance of students in Structural Mechanics courses. 11th IEEE Global Engineering Education Conference, EDUCON 2020, 2020-April, págs. 698-703. Porto, Portugal. doi:10.1109/EDUCON45650.2020.9125385
Rolim, V., Ferreira Mello, R., Kovanovic, V., & Gasevic, D. (2019). Analysing social presence in online discussions through network and text analytics. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 163-167). Maceio; Brazil. doi:10.1109/ICALT.2019.00058
Rolim, V., Ferreira Mello, R., Lins, R., & Gasevic, D. (2019). A network-based analytic approach to uncovering the relationship between social and cognitive presences in communities of inquiry. Internet and Higher Education, 42, 53-65. doi:10.1016/j.iheduc.2019.05.001
Romero, L., Saucedo, C., Caliusco, M., & Gutií©rrez, M. (2019). Supporting self-regulated learning and personalization using ePortfolios: a semantic approach based on learning paths. International Journal of Educational Technology in Higher Education, 16(1), 1-16. doi:10.1186/s41239-019-0146-1
Roque, F., Cechinel, C., Weber, T., Lemos, R., Villarroel, R., Miranda, D., & Munoz, R. (2019). Using depth cameras to detect patterns in oral presentations: A case study comparing two generations of computer engineering students. Sensors (Switzerland), 19(16), 1-20. doi:10.3390/s19163493
Ruiz-Calleja, A., García, S., Tammets, K., Aguerrebere, C., & Ley, T. (2019). Scaling learning analytics up to the national level: The experience from Estonia and Uruguay. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 1-10. Valdivia, Chile.
Saavedra-Sánchez, D., Vidal-Sepíºlveda, M., & Olivares-Rodríguez, C. (2019). Effort analysis of computational thinking process over a gamified and non-gamified environments. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 89-99. Valdivia, Chile.
Salazar, O., Ovalle, D., & de la Prieta, F. (2019). Towards an adaptive and personalized assessment model based on ontologies, context and collaborative filtering. 15th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2018, 801, págs. 311-314. Toledo, Spain. doi:10.1007/978-3-319-99608-0_35
Salazar-Fernandez, J., Sepíºlveda, M., & Munoz-Gama, J. (2019). Describing educational trajectories of engineering students in individual high-failure rate courses that lead to late dropout. 2nd Latin American Conference on Learning Analytics, LALA 2019, 2425, págs. 39-48. Valdivia, Chile.
Sánchez-Mendiola, M., Moreno-Salinas, J., Bautista-Godínez, T., & Martínez-González, A. (2019). Learning analytics in medical education: A turning point? Gaceta Medica de Mexico, 155(1), 90-100. doi:10.24875/GMM 18004801
Santamaría-Bonfil, G., Escobedo-Briones, G., Pí©rez-Ramírez, M., & Arroyo-Figueroa, G. (2019). A learning ecosystem for linemen training based on big data components and learning analytics. Journal of Universal Computer Science, 25(5), 541-568.
Santamaría-Bonfil, G., Ibáñez, M., Pí©rez-Ramírez, M., Arroyo-Figueroa, G., & Martínez-álvarez, F. (2020). Learning analytics for student modeling in virtual reality training systems: Lineworkers case. Computers and Education, 151, 1-19. doi:10.1016/j.compedu.2020.103871
Santamaría-Bonfil, G., Ibáñez, M., Pí©rez-Ramírez, M., Arroyo-Figueroa, G., & Martínez-álvarez, F. (2020). Learning Analytics for Student Modelling in Virtual Reality Training Systems: Lineworkers case. Computers & Education, 151, 1-29. doi:10.1016/j.compedu.2020.103871
Sant-Geronikolou, S., & Martínez-ávila, D. (2019). Prospects of library use data integration in campus information systems: A glocalized perspective. Profesional de la Informacion, 28(4), 1-21. doi:10.3145/epi.2019.jul.10
Schwarzenberg, P., Navon, J., & Pí©rez-Sanagustín, M. (2020). Models to provide guidance in flipped classes using online activity. Journal of Computing in Higher Education, 32(2), 282-306. doi:10.1007/s12528-019-09233-y
Shi, L., Cristea, A., Toda, A., & Oliveira, W. (2020). Exploring navigation styles in a futurelearn MOOC. 16th International Conference on Intelligent Tutoring Systems, ITS 2020, 12149 LNCS, págs. 45-55. Athens, Greece. doi:10.1007/978-3-030-49663-0_7
Shi, L., Yang, B., & Toda, A. (2020). Temporal analysis in massive open online courses – towards identifying at-risk students through analyzing demographical changes. 28th International Conference on Information Systems Development, ISD 2019, 39 LNISO, págs. 146-163. Toulon, France. doi:10.1007/978-3-030-49644-9_9
Silva Filho, R., & Adeodato, P. (2019). Data mining solution for assessing the secondary school students of brazilian federal institutes. 8th Brazilian Conference on Intelligent Systems, BRACIS 2019, (págs. 574-579). Bahia, Brazil. doi:10.1109/BRACIS.2019.00106
Silva, R., de Pontes Bernardo, C., Watanabe, C., da Silva, R., & da Silva Neto, J. (2020). Contributions of the internet of things in education as support tool in the educational management decision-making process. International Journal of Innovation and Learning, 27(2), 175-196. doi:10.1504/IJIL.2020.105077
Silva-Sprock, A., Vicari, R., Rojas-Rincón, M., Frango-Silveira, I., Ponce-Gallegos, J., Maldonado-Mahauad, J., & Toscano, A. (2017). Latin-American Network of Learning Analytics - LALA. 12th Latin American Conference on Learning Objects and Technologies, LACLO 2017, (págs. 1-4). La Plata, Argentina. doi:10.1109/LACLO.2017.8120916
Silveira, P., Cury, D., Menezes, C., & Dos Santos, O. (2019). Analysis of classifiers in a predictive model of academic success or failure for institutional and trace data. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-8. Covington, United States. doi:10.1109/FIE43999.2019.9028618
Simanca Herrera, F., Crespo, R. B., & Burgos, D. (2019). A Solution to Manage the Full Life Cycle of Learning Analytics in a Learning Management System: AnalyTIC. Revista Iberoamericana de Tecnologias del Aprendizaje, 14(4), 127-134. doi:10.1109/RITA.2019.2950148
Simanca, F., Crespo, R., Rodríguez-Baena, L., & Burgos, D. (2019). Identifying students at risk of failing a subject by using learning analytics for subsequent customised tutoring. Applied Sciences (Switzerland), 9(3), 1-17. doi:10.3390/app9030448
Simanca, F., González, R., Rodriguez, L., & Burgos, D. (2020). Personalized tutoring model through the application of Learning Analytics phases. IEEE Latin America Transactions, 18(1), 7-15. doi:10.1109/TLA.2020.9049456
Simonette, M., Magalhí£es, M., & Spina, E. (2020). Learning Analytics as a Sociotechnical System. 4th Future Technologies Conference, FTC 2019, 1070, págs. 904-912. San Francisco, United States. doi:10.1007/978-3-030-32523-7_66
Soares, A., Castro, A., & Jr. (2019). Grouping and labeling in digital learning portfolios. 19th IEEE International Conference on Advanced Learning Technologies, ICALT 2019, (págs. 185-186). Maceio, Brazil. doi:10.1109/ICALT.2019.00063
Somyí¼rek, S., Brusilovsky, P., & Guerra, J. (2020). Supporting knowledge monitoring ability: open learner modeling vs. open social learner modeling. Research and Practice in Technology Enhanced Learning, 15(1), 1-24. doi:10.1186/s41039-020-00137-5
Tamada, M., Netto, J., & De Lima, D. (s.f.). Predicting and Reducing Dropout in Virtual Learning using Machine Learning Techniques: A Systematic Review. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-8. Covington, United States. doi:10.1109/FIE43999.2019.9028545
Tamayo-Moreno, S., & Pí©rez-Marín, D. (2020). Designing Pedagogic Conversational Agents through Data Analysis. TecnoLógicas, 23(47). doi:10.22430/22565337.1455
Tenório, K., Chalco Challco, G., Dermeval, D., Lemos, B., Nascimento, P., Santos, R., & Pedro da Silva, A. (2020). Helping Teachers Assist Their Students in Gamified Adaptive Educational Systems: Towards a Gamification Analytics Tool. 21st International Conference on Artificial Intelligence in Education, AIED 2020, 12164 LNAI, págs. 312-317. Ifrane, Morocco. doi:10.1007/978-3-030-52240-7_57
Tenório, K., Dermeval, D., Monteiro, M., Peixoto, A., & Pedro, A. (2020). Raising teachers empowerment in gamification design of adaptive learning systems: A qualitative research. 21st International Conference on Artificial Intelligence in Education, AIED 2020, 12163 LNAI, págs. 524-536. Ifrane, Morocco. doi:10.1007/978-3-030-52237-7_42
Toriz, E. (2019). Learning based on flipped classroom with just-in-time teaching, Unity3D, gamification and educational spaces. International Journal on Interactive Design and Manufacturing, 13(3), 1159-1173. doi:10.1007/s12008-019-00560-z
Torres-Ruiz, M., Mata, F., Zagal, R., Guzmán, G., Quintero, R., & Moreno-Ibarra, M. (2020). A recommender system to generate museum itineraries applying augmented reality and social-sensor mining techniques. Virtual Reality, 24(1), 175-189. doi:10.1007/s10055-018-0366-z
Valdez, M., Merelo, J.-J., Aguila, A., & Soto, A. (2019). Mining of keystroke and mouse dynamics to increase the engagement of students with programming assignments. 9th International Joint Conference on Computational Intelligence, IJCCI 2017, 829, págs. 41-61. Funchal, Portugal. doi:10.1007/978-3-030-16469-0_3
Vargas, H., Heradio, R., Chacon, J., De La Torre, L., Farias, G., Galan, D., & Dormido, S. (2019). Automated assessment and monitoring support for competency-based courses. IEEE Access, 7, 41043-41051. doi:10.1109/ACCESS.2019.2908160
Verbert, K., Ochoa, X., De Croon, R., Dourado, R., & De Laet, T. (2020). Learning analytics dashboards: the past, the present and the future. 10th International Conference on Learning Analytics and Knowledge: Shaping the Future of the Field, LAK 2020, (págs. 35-40). Frankfurt, Germany. doi:10.1145/3375462.3375504
Vieira, C., Magana, A., & Boutin, M. (2019). Using Computational Methods to Analyze Educational Data. 49th IEEE Frontiers in Education Conference, FIE 2019, 2019-October, págs. 1-4. Covington, United States. doi:10.1109/FIE43999.2019.9028599
Vila, D., Cisneros, S., Granda, P., Ortega, C., Posso-Yí©pez, M., & García-Santillán, I. (2019). Detection of desertion patterns in university students using data mining techniques: A case study. 4th International Conference on Technology Trends, CITT 2018, 895, págs. 420-429. Babahoyo, Ecuador. doi:10.1007/978-3-030-05532-5_31
Villegas-Ch, W., Palacios-Pacheco, X., & Luján-Mora, S. (2020). A business intelligence framework for analyzing educational data. Applied Sciences (Switzerland), 12(14), 1-21. doi:10.3390/su12145745
Villegas-Ch, W., Palacios-Pacheco, X., Ortiz-Garcí©s, I., & Luján-Mora, S. (2019). Management of educative data in university students with the use of big data techniques. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2019(19), 227-238.
Villegas-Ch, W., Román-Cañizares, M., & Palacios-Pacheco, X. (2020). Improvement of an online education model with the integration of machine learning and data analysis in an LMS. Applied Sciences (Switzerland), 10(15), 1-18. doi:10.3390/APP10155371
Weiand, A., Manssour, I., & Silveira, M. (2019). Visual analysis for monitoring students in distance courses. International Journal of Distance Education Technologies, 17(2), 18-44. doi:10.4018/IJDET.2019040102
Yamba-Yugsi, M., Luján-Mora, S., & Pacheco-Romero, H. (2019). Using Google Analytics to Analyze Users of a Massive Open Online Course. 4th International Conference on Information Systems and Computer Science, INCISCOS 2019, (págs. 280-285). Quito, Ecuador. doi:10.1109/INCISCOS49368.2019.00051
Zambon, A., Vilela, P., Baioco, G., & Talarico, F. (2019). Using a blog and text mining to evaluate knowledge construction. 20th European Conference on Knowledge Management, ECKM 2019, 2, págs. 1123-1132. Lisbon, Portugal. doi:10.34190/KM19.212
Publicado
Cómo citar
Número
Sección
Licencia
Authors retain copyright and guarantee the Journal the right to be the first publication of the work. These are covered by a Creative Commons (CC BY-NC-ND 4.0) license that allows others to share the work with an acknowledgment of the work authorship and the initial publication in this journal.